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Theory of unsteady flow about thin cylinders in 
fluids of high electrical conductivity 

By LEON E. RING 
Cornell University, Ithaca, N.Y. 

(Received 10 June 1960 and in revised form 10 March 1961) 

A theory is developed for the incompressible flow of a fluid with- high electrical 
conductivity about thin cylinders (airfoils) in non-uniform motion. A uniform 
magnetic field is applied parallel to the free stream and solutions are obtained 
subject to the restriction of small perturbations. The effects of viscosity are 
included, for the most part, only through the use of the Kutta condition, where 
applicable, for lifting airfoils. The validity and range of applicability of the 
infinite-conductivity assumption are determined on the basis of an order-of- 
magnitude analysis; the general character of the flow is discussed at length. 

The flow-field for infinite conductivity is changed from the non-magnetic 
case only through the new transport speed of vorticity; the forces on the airfoil 
are changed due to surface currents. For the case of the Alfven speed less than the 
free-stream speed, the airfoil lift and pitching moment are given in integral 
form for general unsteady-airfoil motion and are given in closed form for har- 
monic ocsillations. The forces at moderate frequencies may be larger than in the 
corresponding non-magnetic case. The response to a unit-step change in the 
downwash is studied and the asymptotic form of the lift is obtained for small 
and large time. 

For the case of the Alfvh speed greater than the free-stream speed, vorticity 
and current are shed from both the leading and trailing edges. Therefore the 
extension of the usual Kutta condition is not obvious. It is shown that if finite 
viscosity and/or conductivity tend to remove the trailing-edge singularity, the 
flow is unstable and no steady flow can be obtained. 

1. Introduction 
The steady magnetohydrodynamic flow of an incompressible fluid of large 

electrical conductivity about thin cylinders (airfoils) has been studied by Sears 
& Resler (1959). In  the limit of infinite conductivity with a uniform magnetic 
field applied parallel to the free stream, the flow field is found to be irrotational 
and current-free and is in fact identical with the corresponding non-magnetic 
flow. The magnetic field inside the body is identically zero, so that the pressure 
on the body surface is altered due to the implied current sheet on the body surface. 
For large but finite conductivity, this current sheet diffuses into a thin layer. This 
inviscid ‘magnetic-boundary-layer ’ has been studied by Lewellen (1959) and 
is found to have a thickness of the order R$ ) where R, is the magnetic Reynolds 
number. 
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The results of these investigations are of sufficient general interest to suggest 
an analogous study of unsteady flow. In  particular, since thin cylinders in 
asymmetric flow generally produce circulation and lift, onq is led to consider the 
effects of unsteady circulation and vortex shedding. Thus, although ostensibly 
concerned with ‘airfoils ’, the present paper is intended to cast light on phenomena 
that can be expected to appear in a rather general class of unsteady magneto- 
hydrodynamic flows around bodies. The term ‘airfoil’ is used since it suggests 
the thin cylinders being considered and since the methods of classical thin-airfoil 
theory are applicable to the present problem. 

A free-vortex element in an incompressible and infinitely conducting fluid will 
travel at the AlfvBn speed relative to the flow. For the aligned.-fields case, this 
says that shed vorticity will travel parallel to the free stream, but will have a new 
transport speed. This suggests the use of the techniques of classical unsteady- 
airfoil theory, as given by KArmBn & Sears (1938), with modifications for the new 
vortex-transport speeds and the airfoil forces due to surface currents. This is 
done in the present paper, so that the Sears & Resler (1959) steady solution with 
aligned fields is extended to include unsteady airfoil motion. Of course, this is 
based on the assumption, made by Sears & Resler and others, that the correct 
steady-flow pattern has undisturbed conditions far from the body. Other 
hypotheses, leading to grossly different flow patterns, have been suggested by 
Stewartson (1960). 

2. Basic equations 
The equations which govern the motion of an incompressible fluid with finite 

viscosity and scalar conductivity have been given by a number of authors 
(e.g. Resler & Sears 1958) and can be reduced to the following dimensionless form : 

1 -- - B.Vq+-V2B, 
Dt R m  

D B  

v . q  = 0, 

V.B = 0. 

The equations have been non-dimensionalized using the free-stream speed U:, 
the applied magnetic field of induction B:, and the body length Lt. M.K.S 

rationalized units are used, with an asterisk denoting dimensional quantities. 
The three parameters are defined by 

R, is the magnetic Reynolds number and Re the viscous Reynolds number. 
The parameter a2 is the ratio of the magnetic pressure to the dynamic pressure 
in the free stream; it is also the square of the ratio of the speed of an AlfvBn-wave 
in an infinitely conducting medium to the free-stream speed. The fluid is assumed 
to have uniform permeability ,u* and scalar conductivity u*. We will also use the 
vorticity S2 = curl q and the current density j = curl B. 
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Now consider the two-dimensional flow where small perturbations are super- 
imposed on a uniform free-stream and a parallel magnetic field. This is repre- 
sented by 

€3 = (1 + b,, b,, O ) ,  b,, b, < 1 .  

For the most part, it is assumed that the flow field is described by taking zero 
viscosity and infinite conductivity in the linearized form of equations (1) and 

ab ( 2 ) ,  which become au au 
at ax -+-+V(+p+a'b,) = a'- ax ' 

3. General character of the flow 
Xteady $ow 

Before seeking a solution, it is well to establish the general character of the flow 
on the basis of order-of-magnitude arguments. In  particular, the validity and 
range of application of the infinite-conductivity assumption (to be used later) 
will be established. First, let us consider flow with R, < Re. 

By comparing the f i s t  and last terms of equation (2), one may write a charac- 
teristic magnetic diffusion time as r, = R,8:, where 8, is a characteristic dif- 
fusion distance or, in the present case, the current-penetration depth normal to 
the body surface. In  steady flow, the time available for diffusion is the time 
required for current to travel the length of the body. Since the current travelling 
with the upstream Alfven mechanism remains in the neighbourhood of the body 
longer and thus allows greater time for diffusion, the characteristic convection 
time is taken as 7: = Lt/I U t  - B$p*-*p*-g(, which in dimensionless form 
becomes rc = 111 1 -a/. Equating these two times, the penetration depth for a 
convection-diffusion balance is given by 8, = (Ern[ 1 -a])-$. This agrees with 
the result of Sears & Resler (1959), namely that for infinite conductivity the 
flow field is irrotational and current-free. It also agrees with Lary (ISSO), who 
found the penetration depth to be Ikl-4 = {+Rrnl 1 -a'/}-&, since *(l +a) is of 
order unity. 

The strength of the magnetic field inside the body can be estimated by noting 
that the magnetic flux inside the body must be equal to that which has diffused 
from the fluid. The flux which has diffused from the fluid can be approximated by 
8,AB, where AB is the change in the field strength across the diffusion region. 
The flux inside the body can be approximated by EBB, where e is the body thick- 
ness ratio and BB is a measure of the field strength inside the body. Equating 
these, BB is given by BB = 6,AB/e. If 8, < 8, i.e. if the diffusion depth is much 
less than the body thickness, then BB must be nearly zero since A B  can be no 
larger than order unity. This gives an effective 'no-slip' condition on B and 
results in a 'magnetic-boundary-layer ', analogous to the usual viscous boundary 
layer. If 6, $8, BB can be expected to be of the order of the free-stream value 
and AB a small quantity. This agrees with the Sears & Resler result that 
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the magnetic field is zero inside the body for infinite conductivity, and with 
Lary’s result that the magnetic field is only slightly perturbed inside the 
body when t‘ < @R,I 1 - m21}-*. \ 

Unsteady flow 

Now let us extend the above results to unsteady flow. Consider the pitching 
motion of a thin cylinder (insulator) which is described by the circular frequencyw. 
The unsteady characteristic time is taken as the ‘period’ r, = u-l. The pene- 
tration depth for a balance between diffusion and an unsteady input is found 

When &,, > am,, the unsteady current component is carried away by the 
Alfvkn mechanism before it can diffuse to the depth so the essential balance 
remains between convection and diffusion. With this balance, the general flow 
character (except for the wake) can be expected to be the same as for steady 
flow. 

For &,, < a,,,, the unsteady current component is restricted to a smaller region 
than the steady component. Although there is a small-scale balance between 
diffusion and unsteady input, the large-scale balance remains between convec- 
tion and diffusion. There are three cases depending upon the body thickness- 
ratio E .  (a)  W-hen &,, < &,, < E ,  both mechanisms tend toward a magnetic 
boundary layer. (b)  When S,, < E < &,,, the unsteady current gives a magnetic 
boundary layer,while the steady solution gives a high degree of diffusion. This 
could be achieved for moderate values of w with a high R, and a sufficiently 
close to unity. This flow can be described by saying that the magnetic field is 
effectively ‘frozen in the flow’ during an oscillation period but can diffuse a 
large distance during the time that the current stays in the neighbourhood of 
the body. (It is also ‘frozen out of the flow’ or ‘in the body’ during an oscilla- 
tion period.) (c) When E <  S,, < 6,,, both mechanisms allow a high degree of 
diffusion. 

For the slender bodies being considered, the boundary conditions at the body- 
fluid interface can be satisfied by discontinuities across a singularity sheet, 
so the solutions are linear and superposition of solutions is possible (for thickness, 
camber, unsteadiness, etc.). That this is true for the limiting cases discussed 
above follows directly from the work of Sears & Resler (1959) and Lary (1960) 
except for the special case &,, < E < a,,. That it is also true in this case can be 
seen by noting that the steady solution has only small perturbations everywhere. 
Therefore the unsteady solution, within the linear theory, sees only an undis- 
turbed flow. The boundary conditions for the solution of the unsteady flow field 
can thus be satisfied by a singularity sheet. The required unsteady current-sheet 
strength corresponds to the jump from the unsteady flow to the steady magnetic 
field inside the body, since the field strength inside the body cannot change 
during an oscillation period. 

From the above, it is now possible to answer the question of the applicability 
of the infinite-conductivity theory. For the calculation of thickness effects, in 
general it  is required that the magnetic field be approximately zero inside the 
body; this requires that B 3 (R,J 1 -a\)-*. However, the unsteady infinite- 

again by equating times to give &,, = o-*R;*. .. 
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conductivity lifting theory only requires that the unsteady current be confined 
to a thin layer; thus infinite-conductivity theory is valid when either 

1 < (E, 11 - a1 )t or 1 < (WE,)+. 

A case of particular interest occurs when 1 < (WE,)& and 1 9 (Em\ 1 -a])*. 
The solution for this flow is given by the supposition of a steady contribution, 
calculated on the basis of Lary’s (1960) theory, and an unsteady contribution 
calculated on the basis of the infinite-conductivity theory of the present paper. 

4. Conservation laws and Kutta condition 
Conservation of vorticity 

Consider a body at rest which starts to move at time t = 0. At any finite time t ,  
all current and vorticity must be in a finite region of the plane which can be 
enclosed by a curve C, where C is convected with the local flow. Since Q and 
j are assumed to be zero along C, Kelvin’s theorem can be applied to the curve C 
and one can immediately write that 

Qdxdy = 0, ss (7) 

where the integral is taken over all the vorticity, that is, the net vorticity in the 
system remains zero. 

Conservation of current 
A similar constraint will now be obtained for the current. Consider the contour 
C to be a circle of radius r about the body, and integrate equation ( 2 )  around C. 
This gives 

g I Q B . d l  =Ic(-q.VB+B.Vq+-V2B Ern ” .dl. (8 )  

Since there is no current on C, V2B = 0 on C. The net vorticity was shown to be 
zero, so q = 0(r2) on C. Therefore the right-hand side of (8) is O(r-l) ,  which can 
be neglected for a sufficiently large contour. Then, applying Stokes’s theorem 
and integrating over time, we have that 

j d x d y  = const. = 0, ss (9) 

where the integral is taken over all current, and the integration constant is 
evaluated at a time before the start of the body motion. This says that the net 
current in the system remains zero.? 

t One must be a bit careful about what is meant by a two-dimensional problem, since 
all currents must close somehow. If there is a net current flowing, there is some question 
if the closing of the current (in a large wire loop, for instance) can be neglected. In  the 
prwent work, the net current is zero. Therefore the current elements can close through 
conducting side walls, which would give an effect analogous to tip effects of classical-airfoil 
theory. 
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Kutta condition 

In  classical two-dimensional thin-airfoil theory, the undetermined cyclic constant 
(circulation) is specified, to make the solution unique, by using the Kutta con- 
dition. The criterion for small, but finite, viscosity has been discussed by a 
number of authors, including a recent comprehensive discussion by Sears 
(1956). It is because of the fact that vorticity convects with the flow (and diffuses 
relative thereto) that the boundary-layer vorticity leaves the airfoil at the trailing 
edge; therefore the Kutta condition must be applied at this edge. 

For a magnetic boundary layer with a2 < 1, all vorticity and current must 
leave the airfoil from the trailing edge. Thus the Kutta conditiorihnust still 
be applied at the trailing edge. For a2 > 1, the extension is not clear. It can be 
shown that if the angle of attack is suddenly changed, there is an immediate 
flux of vorticity and current from both the leading and trailing edges. Therefore 
it seems that, at least in the unsteady case, the criterion should include the 
leading as well as the trailing edge. Since we lack such a criterion, which must 
come from more detailed boundary-layer considerations, this case will be treated 
without applying a specific condition. 

5. General unsteady airfoil motion 
Fluid model 

Consider the unsteady two-dimensional flow about a thin cylinder (airfoil) 
for arbitrary values of the parameter a2. The airfoil is taken to have zero thick- 
ness and to lie near the x-axis in the range [O ,  11. If the fluid has sufficiently high 
electrical conductivity and low viscosity, all current and vorticity are confined 
to thin wakes and the wakes can be represented as singularity sheets. 

The fluid model used for the solution of the flow field is shown in figure 1, 
and consists of a current and vortex distribution in a downstream wake, over the 
airfoil, and when applicable, in an upstream wake. The current and vorticity in 
the wakes can be related by the solution of equation (5) and (6) with the con- 
dition that the wakes are force-free. This gives the well known AlfvBn-wave 
relations, €pyx, t )  = a€p(x, t )  = fi{t -XI(  1 - a)), 

€p(q t )  = - a€p)(z, t )  = fi(t - x/( 1 +a)}, 
where dl) is wake vorticity, d2) is wake current, and the subscripts 1 and 2 refer 
to upstream and downstream waves respectively. These have velocities and direc- 
tion of travel as shown in figure 1. For any finite time, the wakes will be of finite 
length and all current and vorticity will lie in the interval - R < x < R. 

Potential relations 

The flow outside the wakes can be given by a perturbation magnetic potential 
q92) and a perturbation velocity potential qW. A relation between the potentials 
is obtained by substitution into equation (6). Integration of the x-component 
with respect to x yields the result 
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where the integration constant is found to be zero, by evaluation at x = 00. qS2) 
is now given explicitly in terms of $1) by integration of the above result, following 
a fluid particle. This yields the integral 

Y 

Velocity (1 + CL) U, 

End of /- wake 

I 
I 

X . 
R 

Y 

B,- 4 

End Of wake 7 
3-E+ uo rEnd Of wake -3c3c -R 

Velocity (a + 1) Lro Velocity - (a - 1) U, 

( b )  

FIGURE 1. Fluid model for a lifting airfoil which has been in motion a finite time, with 
(a) a2 < 1, ( b )  a2 > 1. Wake elements have been displaoed from z-axis for clarity. 

The potentials are taken to be identically zero at t = - co. The magnetic and 
velocity potentials must satisfy equation (11) at every point in the flow field. 
Therefore the discontinuities must also satisfy this relation, and the current 
distribution 7 1 2 )  can be expressed in terms of the vortex distribution y(1) in the 
same form as equation (11) (with no y dependence). The vorticity and current 
in the wake are expressed as 

7(1)'(2)(x t )  ,$1),(2)(x, t )  $) , (2 ) ( x ,  t )  + p. '2'(x, t ) ,  (12) 

where the AlfvBn-wave relations are given in (10). 
The circulation and total surface current are related to the distributions by 

where the circulation is positive in the counter-clockwise sense. The total surface 
current can be expressed in terms of the vortex distribution by using the current 
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equivalent of equation (1 1) in equation (13) and the functional form of the wake 
from equation (10). Thus we derive the result 

The first term on the right-hand side is the vortex distribution integrated in a 
time-lagging manner; the second is proportional to the vorticity shed from the 
leading edge in the previous unit of time. These indicate the general time-lagging 
character of the magnetic field to  the velocity field. 

The analogous Wagner integral equations 

In classical unsteady-airfoil theory, the airfoil motion is related to the wake 
vorticity through the so-called Wagner integral equation. If we follow the tech- 
niques of the classical theory (e.g. von K&rm&n & Sears 1938), we obtain the 
generalization : 

r g y t )  + rp(q = - !wake 6(1)(t, t )  (F&)bd~.  (15) 

Here the quasi-steady circulation is given by 

o a a  
Dt at ax 

and the airfoil surface is given by Y ( x ,  t ) .  - = - + - is the linearized convective 

derivative. Fg) represents an arbitrary circulation; if the Kutta condition is 
applied at the trailing edge, then FfE.) is identically zero. The integration over the 
wake includes the forward as well as the rearward wake. It should be noted that 
the conservation of vorticity, equation (7), is used in the derivation of (15). 

The total surface current is expressed in terms of the vortex distribution by 
(14). Using this, an analysis similar to that leading to equation (15) yields the 
result 

where the quasi-steady surface current is given by 

and the surface current corresponding to the arbitrary circulation is 

Equation (17) is the analogue of the Wagner integral equation for current. 
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The problem is now reduced to the solution of the integral equations (15) and 
(17), with the quasi-steady terms defined by (16) and (18), with the functional 
form of the wake given in (10) and given some law to specify the circulation rp) 
(e.g. the Kutta condition). 

The lift 
Consider the lift due to the vortex and current distribution over the airfoil and 
in the wake. Since the wake is force-free, it can introduce no net force. Divide 
the lift into that due to the vorticity and that due to the Lorentz force. The lift 
due to the Lorentz force is 

A 2 *  = B*//j*dx*dy*, (20)  

where the integral includes all current. This integration just gives the total cur- 
rent in the system, and, by equation (9), this is identically zero. Therefore the 
lift on the airfoil is equal to the force on the total vorticity in the system. The 
force on the vorticity can be obtained by calculating the impulse of the vortex 
system, as given by K&rm&n & Sears (1938); this gives 

2* d R  
C&) = *u*2L* = 2 - (x - g) y y x ,  t )  ax. 

2 P  0 0 d t L  

The lift is treated following the method of K&rm&n & Sears with modification 
for the change in vortex transport speeds, used by Ring (1960). The result, 
including arbitrary circulation and a possible forward wake, is 

where A,  is the lift associated with apparent mass and is given by 

Here ykl) is the quasi-steady vortex distribution over the airfoil, 

From equation (22 ) ,  the lift can be compared to that of classical unsteady- 
airfoil theory. The apparent mass and the quasi-steady lift (the second term) 
are identical with classical theory. The third term represents the effect of an 
arbitrary circulation and is identically zero for a trailing-edge Kutta condition. 
The effect of vorticity in the wake (the fourth term) is formally the same, but is 
changed due to the new transport speed of vortices. The last term is new and 
might be called the magnetic term. The kernel of the magnetic term is seen to 
approach unity far from the airfoil, unlike the kernel of the wake-vorticity term 
which approaches 6-l. This means that the magnetic term takes into account all 
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current inthe wake and gives a contribution even after the flow has become steady 
near the airfoil. I n  fact, it can easily be shown that the magnetic term includes 
the effects of surface currents in the steady solution and gives rige to the (1 - a2) 
factor of Sears & Resler (1959). 

The pitching moment 

As in the lift calculation, we divide the pitching moment into that due to the 
vorticity and that due to the currents. The pitching moment coefficient about the 
airfoil midchord (x = +), measured positive in the clockwise sense, due to the 
Lorentz force can be written as 

The current can be expressed in terms of the vorticity in a manner similar to the 
potential relation (11 a) ,  namely 

We differentiate this with respect to time and thenintegrate by parts with respect 
to x; then, by use of (1 1 a) ,  this becomes 

dAC, 
at 

-- - - 2a2 ( (R  - +)[y(’)(R, t )  - y(2)(R,t)]+ (R + g)[y(1)(-R,t)-y(2)(-R, t ) ]  

R 

- R  
-1 [y(l)(x, t )  - y@)(x, t ) ]  ax 

The first two terms on the right-hand side are zero, since they represent vorticity 
and current beyond the ends of the wake; the last term is the net vorticity minus 
the net current in the system and therefore is zero. By integration over time, the 
incremental pitching moment is found to be given by 

AC,, = constant = 0, (28) 

where the constant is evaluated at a time before the start of the airfoil motion. 
Therefore the surprising result is obtained that the pitching moment due to the 
total current distribution is zero. The lift due to the current is zero essentially 
as a consequence of the conservation law for current; however, it is not obvious 
why the pitching moment should have been zero. 

The pitching moment due to the vorticity can be found by using impulse 
techniques. Again following the method of KQrmAn & Sears as modified by Ring, 
the pitching moment can be expressed as 

Cm(t) = A ,  + 2Io1 ( x  - 8)  y ;yx ,  t )  dx - - ‘S wake 
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where A ,  is the pitching moment related to apparent-mass effect and is defined 

A ,  - - [(s - +), - Q] $’(z, t )  dx. its,’ 

The first three terms are recognized as those from classical unsteady-airfoil 
theory. The wake-vorticity term is formally the same but is changed because of 
the new transport speeds of vorticity. The last term is new and might be called 
the magnetic term. 

As the duration of the airfoil motion becomes large, and therefore the current 
is far from the airfoil) it appears that the magnetic term diverges, since the 
integrand approaches <d2)(<, t).  However) that this is not actually the case can be 
seen by subtracting the magnetic moments due to surface current on the airfoil 
(expressed in terms of the wake from equations (25) and (28)). In fact, the 
magnetic term again gives rise to the (1 - a,) factor of Sears & Resler (1959). 

6. Harmonic oscillations, a2 < 1 

Calculation of wake distributions 

Consider an oscillating airfoil with the upwash on the airfoil given by 

where g(x) is an arbitrary function. The frequency w is taken such that 9iu > 0;  
this corresponds to an airfoil oscillating with increasing amplitude. Clearly 
9 i w  can be put equal to zero in the final results. 

Following 9 4, the Kutta condition is applied at the airfoil trailing edge, since 
a2 < 1. This means that I’g) must be identically zero. 

The quasi-steady circulation and surface current can be expressed as 

rg) = G(1)&, r&2) = G(2)eW-4), (32) 

where G(l) and G(2) are complex in general and are given by using equation (31) 
in equations (16) and (18). Thus we obtain the relations 

From the functional form of the wake given in (lo), the wake distributions can 
be written as 

(35) I- @(x, t )  = ac12)(x, t )  = g ,  exp {iw[t - (x - +)/( 1 - a)]},  

~Ll)(x, t )  = - aeL2’(x, t )  = 9, exp (iw[t - (z - +)I( 1 + a)]}. 

where g1 and g, are complex constants to be determined. Using equations (32) and 
(35), equation (15) can be reduced to 

- 2G(l) = g1[K&” + KIl-)] + g2[Kb2) + Ki2)], (36) 
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where the integrals have been identified as Bessel functions; K,(x) is the nth- 
order modified Bessel function of the second kind. The superscripts are a short- 
hand notation to indicate the arguments, as shown below: 

The factor (1 - a)// 1 - a1 , which is unity in the present case, is included to make 
the definitions useful for a2 > 1. Similarly, equation (17) can be written as 

- 2G(2) = g lD(w,  a) +g2D(w, -a), 
where D is defined by 

(39) 

(40) 

The function D has been evaluated in Ring (1960) and is 

D(w, a) = [J,- iJl] K p +  a-l[JoKp + i J I K p ] ,  

where J,(z) is the nth-order Bessel function of the first kind. The implied argu- 
ments of J,and J1 are i w .  The simultaneous solution of equation (36) and (38) gives 

where Q G(2)/G(1). (42) 

The constankg, is given by taking a -+ - a in the expression for g,. This essen- 
tially represents the solution of the flow, since the lift, pressure distribution, etc., 
can easily be expressed in terms of G(1),(2) and gl, 2. 

Force calculations 

The lift has been given in equation ( 2 2 ) ;  with the use of (35) and (41), this can be 
reduced to 

where 
c,(q = A,- 2 r p ( t )  ~ ( i i ~ , ~ ) ,  (43) 

T(&iw,  a) is the so-called Theodorsen function of classical unsteady-airfoil theory, 
modified to include the magnetic effects. (It should be noted that w is the 
reduced frequency based on the full chord, as opposed to the usual practice of 
basing it on the semi-chord.) The most important change in the Theodorsen 
function is the appearance of G. Thus, while the classical Theodorsen function 
depends only on frequency, the modified Theodorsen function depends upon the 
mode of oscillation (and on a) as well. 
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In  a manner similar to the life calculation, the pitching-moment is found to be 

where 
(1 -a)  [Ki') - (4a / iw)  [D(w, -a)  - G(Ki2) + K12)}] 

- (1 + a)  [KS2) + (4a/iw) K12)] [D(w, a )  - G{Kil) + KII-)}] 
S(+iw,  a )  3 D(w, -a)  [ K p  + K p ]  - D(w, a)  [ K f )  + K p ]  * (46) 

The function S(+io, a )  includes the wake and all magnetic effects. The appear- 
ance of G again shows that the function is not universal but depends upon the 
mode of oscillation considered. 

Three G's are of particular interest, namely, 

GI = Jo-iJl, GII = 4J1/w, GIII = +[Jo-iJl] +2Jl/w.  (47) 

Case I corresponds to vertical airfoil oscillations, case I1 to a downwash linear 
about the mid-chord, case I11 to a downwash distribution linear about the quar- 
ter-chord. The first two are of interest because of their mathematical simplicity, 
the last because of a special high-frequency property which will become apparent 
later. 

Low-frequency limit 

The low-frequency expansions of T and S are obtained by expanding G in a 
power series and by using the small-argument Bessel-function expansions. 
After straightforward but lengthy algebraic manipulation, the force coefficients 
are found to be 

&(t) = (1 + ~ ? ) ~ ~ - 2 r p ( t ) ( ( i  -a2)++(1 +az)iwInBw++[(l+a2) 

x {y  + +in - 4 In (1 - a2)} + a In (1 + a)/(  1 - a)] iw  + O(&02 ln2 &)}, (48) 

The apparent-mass term is included in the pitching-moment although it is of 
order w and some terms of order w have been neglected. 

The first thing to note from these expressions is that as w --f 0 the force co- 
efficients become (1 - a2) times the values for non-magnetic flow in agreement 
with the Sears-Resler result. The coefficient of the (wlnw) term is increased by 
the factor (1 + a2); the coefficient of w is also increased because of magnetic effects. 
Thus, although the steady forces are reduced by a factor (1 - a2), there is a general 
tendency for the unsteady contribution to be increased by the magnetic effects. 

The limit a + 0 

Taking the limit a -+ 0 (i.e. the magnetic field approaching zero), it  is seen that 

and 

+ O(a2), 

+ O(a2). 

T(iw,a) = Kl(iW) 

S(iw,a) = KO(i@) 

K,(iw) + Kl(iw) 

K,(io) +Kl(iw) 
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These limiting forms are identical with classical theory. The coefficient of the 
a2 terms can be obtained; however, it turns out that the frequency dependence 
is of such a complicated nature as to yield little information. 

High-frequency limit 

As w -+ 00, it is convenient to represent G by an asymptotic expansion of the form 

Using this expansion of G, the asymptotic expansion of T is 
~ ._ 

T(&iw,  a) N 4 & +ia2 (1 - 26) e-iw+ (4iw)-l{l+ 2a2- 4a2&+ 

t ia2[ 1 - 56 - 4$-] e-iw + a4( 1 - 26) e-2iw} + . . . . (53) 

This expansion is valid for -n < argw 6 0; the top sign is to be used for 
arg iw > 0 and the bottom sign for arg iw < 0. The expansion of X is similar. For 
a = 0, T is asymptotic to the constant $, as is known from classical theory. 
However, the general case represents a decidedly different behaviour. If viewed 
in the complex plane, as w becomes large (and real), T describes a circle of radius 
+a2( 1 - 26) about the point +. It approaches this circle in an oscillating manner, 
as seen from the second term in the expansion. Thus, while the steady-flow 
theories of Lary (1960) and of Sears & Resler (1959) predict small forces in the 
neighbourhood of a = 1, the present theory predicts large forces due to unsteady 
effects. 

Case I11 (equation (47)) has the special property that ( 1  - 26) = 0 ; in fact, it is 
thsvnly linear downwash distribution to have this property. The reason why this 
is true will be pointed out in the discussion of the Wagner problem ($7). 

The limit a+ 1 

There is some question as to the validity of the solution for a = 1 (e.g., the Kutta 
condition). However, the limiting solution is of interest since it will shed some 
light on the solution for a near but not equal to unity. For a -+ 1-, we obtain 

Jo-G 
J, Ki2) + i JI KF ’ T(+iw, l - )  = Ki2) 

S(+iw, 1-) = T ( + i w ,  1-) g+i]. 
(54) 

( 5 5 )  

The behaviour of these functions for large frequencies is similar to the general 
case, except that the radius of the asymptotic circle has been maximized. It is 
not valid to take the limit w -+ 0 in these functions, since for a near unity we 
required that 1 < (OR,)& ($3). However, for large R,, w can be quite small. Thus 
we can consider small frequencies, keeping in mind the physical requirement that 
w must be positive. Using the low-frequency expansions of equations (54) and 
(55), the force coefficients are 

CL(t) = 2A, + O ( W 2 ) ,  Cm(t) = O ( w ) .  (56) 

Thus for low frequencies and a near unity, the forces on the airfoil are small. 
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The circulation for a --+ 1- and small w is 

J O  

so that the circulation is small. For zero circulation, the flow pattern must 
correspond to classical hydrodynamic flow with a relaxed Kutta condition. There- 
fore the flow pattern approached by taking w -+ 0 with a = 1- has zero lift with 
zero circulation, as opposed to the limit in the Sears-Resler theory (and in the 
present theory), a -+ 1, with w = 0, which gives zero lift with $0.  Following 
§ 3, both limits may be valid for R, = 00, with neither valid for R, < co. However 
the former limit can be approached to any desired degree of acczuracy by taking 
R, arbitrarily large but finite. 

7. The Wagner problem, a2 < 1 

Forwdation of problem 

The classical problem of the response to an instantaneous change in the down- 
wash distribution on a thin airfoil is referred to as the ‘Wagner problem’. The 
downwash for this case may be represented by 

Dy(x’  t ,  = g(x)H(t) ,  
Dt 

where H(t )  is the unit-step function defined by 

0, t < 0, 

1, t > 0. 
H(t) = 

The downwash of equation (58) can be obtained by Fourier superposition from 
equation (31). Similarly, all quantities from the harmonic-oscillation solution 
may be superimposed to give the corresponding quantities caused by the in- 
stantaneous change of downwash. 

The qua&-steady circulation is obtained from equation (32) as 

l?il)(t) = G(l)H(t) (59) 

The lift, obtained from equation (43) is 

where 

r i  

J O  

e S t  
W ( t ,  a )  = - T(+, a) - ds, s 

and s ( t )  is the Dirac delta function. The integral has been expressed as a Laplace- 
transform by taking s = iw and x,, to lie to the right of any singularities. The 
apparent mass has given an impulse lift at t = 0; the lift at  later times is all due 
to the modified Wagner function ?V(t,a). Let us confine our attention to this 
function. 
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W(t, a) for small times 

The standard method of obtaining the behaviour of W for small times is to obtain 
the asymptotic expansion of T for s --f 00, and then relate this to the asymptotic 
expansion of W for t -+ 0. The expansion of T(+s, a )  for s --f 00 is given in equa- 
tion (53) and contains exponential terms. It has been shown by Ring (1960) 
that the terms give a contribution like exp ( - l /t)  for small times. Therefore, 
using known results (e.g. Doetsch 1950), the expansion of W for small times is 
given, from equations (61) and (53), as 

b 
W(t, a)  = 8 + (t + +a2 - a2G+) t + O(t2). 

The first term in W remains equal to +, unaffected by the magnetic field. The first 
magnetic effects are proportional to time and, since Gf has appeared, depend 
upon the downwash distribution considered. 

The result given in equation (62) will be valid even for small R,, provided the 
time is taken so small that the current is still restricted to a thin layer. Following 
$3, this will be true for t < lOWR,, where the limit on the current-penetration 
depth has arbitrarily been taken as 8, = 10-l. 

b 

The logarithmic singularity 

From the asymptotic expansion (53), it is seen that convergence of the integral 
in equation (61) is obtained for all time except at t = 1 where est balances the 
factor e-sand gives rise to a logarithmic singularity. By extracting the coefficient 
of the singularity, W is found to be given by 

w(t,a) = -~n-la2(1-2Q)1n[t-11+0(1). (63) 

This represents a marked change from the classical Wagner function, which has 
no singularities. The singularity is seen to arise from the high-frequency oscil- 
lating behaviour of T ;  having connected these phenomena, i t  is now possible to 
examine their origin. 

The logarithmic singularity in W appears at time t = 1. At t = 1, the fluid at 
the trailing edge is that which was at the leading edge when the downwash was 
changed. Thus we are led to the examination of the flow near the leading edge at  
high frequencies. A calculation of the vortex distribution yields 

Thus the coefficient of the high-frequency oscillations of T(+io, a), the coefficient 
of the logarithmic singularity of W(t, a), and the coefficient of the leading-edge 
vortex singularity a t  high frequencies all contain the factor (1 - 2G). Thus it 
appears that the leading-edge vortex singularity interacts with the magnetic 
field to produce the observed behaviour of T and W. 

W(t, a) for large times 

The asymptotic expression of T valid for largsl < 7~ is 

1 1 iaz(1- 20) e-s 
2 1 f iia2s-le-5 * 

T(+s,a) N - 
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By setting the denominator equal to zero, T(45,a) is found to have infinitely 
many simple poles to the left of, and bounded away from, the imaginary s - axis. 

It is shown by Ring (1960) that the integration in equation (61) along C, and 
C, (figure 2 )  is o( 1) as n --f 00 for t > 1. Therefore (61) can be written as 

a)  ds + X Res 

where the summation is to be made over all poles to the right of C2. The summation 
can be shown to converge for t > 1, by using the asymptotic formulation a t  the 
poles. 

FIGURE 2. Integration contours in the evaluation of V(t, a). 

It is now assumed that T($s,  a )  has no poles for 9 s  2 0, i.e. that there are no 
unstable or neutrally stable solutions with I?&') = 0. By using the expansion of 
T for small s, the integral in equation (66) for large times can be given directly 
(e.g. Doetsch 1950). Hence, 

The summation term in equation (66) does not contribute under the asumption 
that there are no poles for 9 s  3 0 and because the effect of any poles with 9 s  < 0 
(which do in fact exist) is exponentially small. In  this connexion, it should be 
recalled that these poles are bounded away from the imaginary axis. 

Equation (67) is seen to reduce to the classical case for a2 = 0. As time goes 
to infinity, the solution approaches the Sears-Resler solution; the time to reach 
the steady solution is increased by the factor (1 +a2). This effect might be ex- 
pected in view of the lagging of the magnetic field. 

V(t, a) = (1 - a2) - +( 1 + a2) t-l+ . . . . (67) 

8. Flow with a2 > 1 General relations 

The theory for general unsteady-airfoil motion has been formulated in $5 in 
terms of an arbitrary circulation rp), where I?&) is zero for a trailing-edge Kutta 
condition. For a2 > 1, the Kutta condition is not directly applicable; also, 

28 Fluid Mech. 11 
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the proper extension is not obvious, as noted in $4. Without a law to specify rp), 
the flow cannot be determined uniquely. However, some general information 
regarding the stability of the flow can be obtained. For this purpose it is conveni- 
ent to express r f )  in terms of the leading- and trailing-edge singularity strengths. 

Let us introduce the ratio, p, of F f ) ( t )  to the other part of the circulation, i.e. 

It is easily shown that 

$l)( 1-, t )  trailing-edge singularity strength - /3 
y(1)(0+, t )  - leading-edge singularity strength 
-~ - - =- 

1 -B’  
so that p is a measure of the relative singularity strengths. /3 = 0 corresponds 
to a trailing-edge Kutta condition and /3 = 1 corresponds to a leading-edge 
Kutta condition. It seems reasonable to restrict p to the range 0 < p < 1, since 
/3 outside this range corresponds to ‘supercirculation.’ This will be done here 
although it is not a critical assumption for the analysis. 

Harmonic oscillation 

Consider an oscillating airfoil with the upwash &s given by equation (31). Then 
the quasi-steady quantities and wake distributions can again be represented as 
in equations (32) to (35). Using these, the analogous Wagner integral equations, 
(15) and (17), are treated in a manner similar to that leading to (36) and (38). The 
difference is that the integration over is forward of the airfoil; this has the net 
effect of changing the sign of the KO terms as indicated in the definitions (37). 
These results can be reduced to 

- 2G(’) - 2PGL” = gl[( 1 - 2p) KL1) + Kil)] + ga[( 1 - 2p) KL2) + Ki‘)], (70) 

-2G(2)-2pJoGg) = glDg(w,a)+g,Dg(o, -a) ,  (71) 

where PGg) corresponds to the quasi-steady contribution of equation (68 ) ,  

and the function D (see (40)) is modified to include the wake effects associated 
with p, giving 

Dg(0, a)  = [(l -2,5)Jo-iJl] K~l’+a-l[J,K~l)+iJIK~l)]. (73 )  

The lift and pitching moment can be given in a form similar to equations (43) and 
(45). This will not be carried out in detail here; rather, let us turn our attention 
to the stability of the flow. 

Stability of the $ow 
For a given airfoil motion and a given p, the wake intensities g, and g2 are given 
by the solution of equations (70) and (71), provided the determinant of the co- 
efficients does not vanish. If the determinant vanishes, then there is an eigen- 
solution, i.e. there is a solution with g(z) = 0 but gl,2 += 0. Let us look for such 
solutions. 
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The determinant of the coefficients of g, and g, in equations (70 )  and (71 )  is 

21177 + 1n 2 m + n  

FIGURE 3. Location of an eigen-value, corresponding to  a given positive integer n, in the 
complex w-plane as a function of a and p. p = 0 corresponds to a trailing-edge Kutta 
condition; /3 = 1 to a Kutta condition applied at the leading-edge. 

where the asymptotic expansion is valid for largo] < n. The zeros of the deter- 
minant for large frequencies can be found by equating the largest terms in the 
expansion. If  0 < P < 1, then we take 

- P(a + 1 )  + ( 1 - P)  (a  - 1 )  i e-iw = 0 
which gives zeros a t  

B w  = 2nn+&r ,  Wiw = In((1-P) (a- l ) / P ( a +  I)}, (75) 

where n is a large positive integer. Continuing this analysis, it is found that a 
given pole will move as shown in figure 3, asp goes from 0 to 1. A similar analysis 
shows that there is another set of poles which corresponds to reflexion about the 
imaginary w-axis in figure 3. 

Therefore the determinant of equation (74) has infinitely many zeros, with 
corresponding eigen-solutions. For B i w  > 0, the solutions diverge exponentially. 
Thus, whenever 

P @ + l ) / ( l - - P ) ( a - l )  < 1 ,  (76) 
28-2 



FIGURE 4 (a) .  The modified Theodorsen function, T(+iw,  a), for vertical oscillations, case I. 
Thie is typical of the general case. ( b )  The modsed Theodorsen function, T(&, a) ,  f G r  the 
cme of a, downwash distribution linear about the airfoil quarter-chord, case 111. This is 
the special case in which the function is not asymptotic to a circle. 



FIGURE 5 (a). The function S(+io, a) for vertical oscillation, case I. ( b )  The function 
S(+io, a) for a downwaah distribution linear about the airfoil quarter-chord, case 111. 
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there will be diverging eigen-solutions and the flow will be unstable. Using (69), 
this criterion can be written as-t 

Trailing edge singularity strength 
Leading edge singularity strength 

Rear wake speed 
Forward wake speed 

X 1 < 1. (77) 

We conclude, from this brief study of flow with a2 > 1, that steady flow must 
be unstable when the criterion stated in (76) and (77) is satisfied. It appears that 
under these conditions the vortices that move forward and rearward are capable 
of interacting in such a way as to induce a diverging oscillatory circulation about 
the stationary airfoil. Presumably such oscillation would continue until violent 
separation (stalling) occurs, invalidating the assumptions of the present theory. 

On the other hand, it is conceivable that the resultant effect of viscosity 
and electrical resistance in a real fluid, when a2 > 1, is to enforce an effective 
Kutta condition a t  the leading, rather than at the trailing, edge. This possibility 
is suggested by the studies of Lary (1960), Lewellen (1959), Greenspan & Carrier 
(1959), and Hasimoto (1959) (all of which pertain, however, to steady flow). 
If this occurs, criterion (76) may not be satisfied, and we cannot conclude here 
that the flow is unstable. It seems clear that further study in this area must 
await clarification of the roles of viscous and magnetic boundary layers and sepa- 
ration in fixing the circulation about cylindrical bodies. 

9. Conclusions 
The main conclusion to be drawn from this work is that unsteady effects 

become more important as the magnetic field strength increases. The steady- 
flow theories of Lary (1960) and of Sears & Resler (1959) predict small forces for 
a2 near unity; the present theory predicts large forces due to unsteady effects. 
In  fact, figures 4 and 5 show that at moderate frequencies the forces may be 
larger than in the corresponding non-magnetic case. 

For a2 > 1, there is a definite possibility that the flow will be unstable, i.e., 
that no steady solution exists. In  particular, if the boundary layers (magnetic 
and/or viscous) ac t  in such a way as to remove the trailing-edge singularity, the 
flow will be unstable. 
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